MEMORANDUM

TO:

Mr. Addison Rice

Anderson, Mulholland and Associates

DATE: July 2, 2015

FROM: R. Infante

FILE: 1503058BR1

RE:

Data Validation

Air samples

SDG: 1503058BR1

checker by 17 3/14/15

SUMMARY

Full validation was performed on the data for several gas samples analyzed for selected volatile organic compounds by method Compendium Method TO-15: Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999. The samples were collected at the Bristol Myer Squib-Building 6 VI facility, Humacao, PR site on March 02, 2015 and submitted to Eurofins Air Toxics, Inc. of Folson, California that analyzed and reported the results under delivery groups (SDG) 1503058BR1.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999; Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #4. October, 2006. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. In general the data is valid as reported and may be used for decision making purposes.

The data results are acceptable for use. The following results were qualified as estimated (J): Freon-11, 2-Propanol, Carbon disulfide, 2-butanone, Tetrachloroethane, 1,2,4-Trmethylbenzene and Naphthalene in samples 1503058BR1-06A/1503058BR1-07A due to the % RSD outside laboratory/method control limit for laboratory duplicates.

SAMPLES

The samples included in the review are listed below

Client Sample ID	Lab. Sample ID	Collected Date	Matrix		Analysis
B6-1SS	1503058BR1-05A	03/02/20	015	Air	VOCs
B6-2SS	1503058BR1-06A	03/02/20	015	Air	VOCs
B6-2SSDup	1503058BR1-04A	03/02/20	015	Air	VOCs

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- Surrogate spike recovery
- o Internal standard performance and retention times
- o Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

VOCs (Method TO-15)

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks except for the followings:

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION/ UNIT
03/05/15	1503058BR1-08A	Air/low Air/low Air/low Air/low Air/low Air/low Air/low Air/low	Bromomethane m,p-xylene Cumene Propylbenzene 4-Ethyltoluene 1,3,5-Trimethylbenzen 1,2,4-Trimethylbenzen	

No action taken analytes not detected in the samples above reporting limits except for acetone. Acetone concentration in blank < 5x the concentration found in samples.

Summa canister met cleaning certification criteria.

No trip/field blank analyzed with this data package.

Surrogate Spike Recovery

The surrogate recoveries were within the laboratory QC acceptance limits in all samples analyzed.

Internal Standard Performance

VOCs and Methanol (TO-15)

Samples were spiked with the method specified internal standard. Internal standard are performance and retention times met the QC acceptance criteria in all sample analyses and calibration standards.

Laboratory/Field Duplicate Results

Field/laboratory duplicates were analyzed as part of this data set. Target analytes meet the RPD performance criteria of +25% for analytes $5\times SQL$ except for the followings:

Laboratory duplicates:

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
1,2,4- Trichlorobenzene		150	101	39	No action, professional
Hexachlorobutadiene		149	101	38	judgment. QC sample.
Naphthalene		123	84	38	

Field duplicates:

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Freon 11		0.52	ND	NR	Qualify results (J) in sample and duplicate
2-Propanol		210	660	103 %	Qualify results (J) in sample and duplicate

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Carbon Disulfide		2.1	ND	NR	Qualify results (J) in sample and duplicate
2-Butanone		91	70	26 %	Qualify results (J) in sample and duplicate
Tetrachloroetheme		1.3	0.32	121 %	Qualify results (J) in sample and duplicate
1,2,4- Trimethylbenzene		17	12	35 %	Qualify results (J) in sample and duplicate
Naphthalene		27	19	35 %	Qualify results (J) in sample and duplicate

LCS/LCSD Results

VOCs

LCS/LCSD (blank spike) associated with this data package were analyzed by the laboratory. Recoveries and RPD within laboratory control limits except for the following:

LCS ID	COMPOUND	% R	RPD	QC LIMIT
1503058BR1-10A	1,2,4-Trichlorobenzene	150 %	39	70 - 130/25
	Hexachlorobutadiene	149 %	38	70 - 130/25

No action taken, professional judgment.

Quantitation Limits and Sample Results

Dilutions were performed on TO-15 samples (see worksheet).

Calculations were spot checked.

Certification

The following samples 1503058BR1-05A; 1503058BR1-06A; and 1503058BR1-07A were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid. Some of the results were qualified.

Rafael Unfante

Chemist License 1888

Client Sample ID: B6-1SS Lab ID#: 1503058BR1-05A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j030523r1 6.72		of Collection: 3/2 of Analysis: 3/6/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	3.4	Not Detected	17	Not Detected
Freon 114	3.4	Not Detected	23	Not Detected
Chloromethane	34	Not Detected	69	Not Detected
Vinyl Chloride	3.4	Not Detected	8.6	Not Detected
1,3-Butadiene	3.4	Not Detected	7.4	Not Detected
Bromomethane	34	Not Detected	130	Not Detected
Chloroethane	13	Not Detected	35	Not Detected
Freon 11	3.4	″ 1.4 J	19	7.8 J
Ethanol	13	18	25	35
Freon 113	3.4	Not Detected	26	Not Detected
1,1-Dichloroethene	3.4	Not Detected	13	Not Detected
Acetone	34	140	80	330
2-Propanol	13	970	33	2400
Carbon Disulfide	13	2.5 J	42	7.9 J
3-Chloropropene	13	Not Detected	42	Not Detected
Methylene Chloride	34	Not Detected	120	Not Detected
Methyl tert-butyl ether	3.4	Not Detected	12	Not Detected
trans-1,2-Dichloroethene	3.4	Not Detected	13	Not Detected
Hexane	3.4	1.9 J	12	6.7 J
1,1-Dichloroethane	3.4	Not Detected	14	Not Detected
2-Butanone (Methyl Ethyl Ketone)	13	Not Detected	40	Not Detected
cis-1,2-Dichloroethene	3.4	Not Detected	13	Not Detected
Tetrahydrofuran	3.4	Not Detected	9.9	Not Detected
Chloroform	3.4	3.6	16	18
1,1,1-Trichloroethane	3.4	Not Detected	18	Not Detected
Cyclohexane	3.4	0.54 J	12	1.9 J
Carbon Tetrachloride	3.4	Not Detected	21	Not Detected
2,2,4-Trimethylpentane	3.4	Not Detected	16	Not Detected
Benzene	3.4	1.2 J	11	3.9 J
1,2-Dichloroethane	3.4	Not Detected	14	Not Detected
Heptane	3.4	Not Detected	14	Not Detected
Trichloroethene	3.4	Not Detected	18	Not Detected
1,2-Dichloropropane	3.4	Not Detected	16	Not Detected
1,4-Dioxane	13	Not Detected	48	Not Detected
Bromodichloromethane	FA 8.4	Not Detected	22	Not Detected
cis-1,3-Dichloropropene /	184	Not Detected	15	Not Detected
4-Methyl-2-pentanone	Infante	1.3 J	14	5.4 J
Toluene M	éndez	2.8 J	13	11 J
trans-1,3-Dichloropropene 10	# 1888 374	Not Detected	15	Not Detected
4 4 1	, - ,	Not Detected	18	Not Detected
Tetrachloroethene	- CAP 3.4	0.85 J	23	5.7 J
1,1,2-Trichloroethane Tetrachloroethene 2-Hexanone	LICENY 13	Not Detected	55	Not Detected

Client Sample ID: B6-1SS Lab ID#: 1503058BR1-05A

EPA METHOD TO-15 GC/MS FULL SCAN

1		
File Name:	j030523r1	Date of Collection: 3/2/15 4:35:00 PM
Dil. Factor:	6.72	Date of Analysis: 3/6/15 12:05 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	3.4	Not Detected	29	Not Detected
1,2-Dibromoethane (EDB)	3.4	Not Detected	26	Not Detected
Chlorobenzene	3.4	Not Detected	15	Not Detected
Ethyl Benzene	3.4	0.74 J	14	3.2 J
m,p-Xylene	3.4	2.5 J	14	11 J
o-Xylene	3.4	7.2	14	31
Styrene	3.4	0.43 J	14	1.8 J
Bromoform	3.4	0.87 J	35	9.0 J
Cumene	3.4	Not Detected	16	Not Detected
1,1,2,2-Tetrachloroethane	3.4	Not Detected	23	Not Detected
Propylbenzene	3.4	Not Detected	16	Not Detected
4-Ethyltoluene	3.4	2.4 J	16	12 J
1,3,5-Trimethylbenzene	3.4	0.98 J	16	4.8 J
1,2,4-Trimethylbenzene	3.4	2.0 J	16	10 J
1,3-Dichlorobenzene	3.4	Not Detected	20	Not Detected
1,4-Dichlorobenzene	3.4	Not Detected	20	Not Detected
alpha-Chlorotoluene	3.4	Not Detected	17	Not Detected
1,2-Dichlorobenzene	3.4	Not Detected	20	Not Detected
1,2,4-Trichlorobenzene	13	Not Detected	100	Not Detected
Hexachlorobutadiene	13	Not Detected	140	Not Detected
Naphthalene	6.7	0.49 J	35	2.6 J

J = Estimated value.

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	102	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: B6-2SS Lab ID#: 1503058BR1-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j030521r1 2.99		of Collection: 3/2 of Analysis: 3/5/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	1.5	0.48 J	7.4	2.4 J
Freon 114	1.5	Not Detected	10	Not Detected
Chloromethane	15	Not Detected	31	Not Detected
Vinyl Chloride	1.5	Not Detected	3.8	Not Detected
1,3-Butadiene	1.5	Not Detected	3.3	Not Detected
Bromomethane	15	Not Detected	58	Not Detected
Chloroethane	6.0	Not Detected	16	Not Detected
Freon 11	1.5	0.52 J 🧳	8.4	2.9 J
Ethanol	6.0	14	11	27
Freon 113	1.5	Not Detected	11	Not Detected
1,1-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Acetone	15	160	36	390
2-Propanol	6.0	210 🦁	15	530
Carbon Disulfide	6.0	2.1 J	19	6.6 J
3-Chloropropene	6.0	Not Detected	19	Not Detected
Methylene Chloride	15	Not Detected	52	Not Detected
Methyl tert-butyl ether	1.5	Not Detected	5.4	Not Detected
trans-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Hexane	1.5	Not Detected	5.3	Not Detected
1,1-Dichloroethane	1.5	Not Detected	6.0	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.0	91	18	270
cis-1,2-Dichloroethene	1.5	Not Detected	5.9	Not Detected
Tetrahydrofuran	1.5	18	4.4	53
Chloroform	1.5	2.8	7.3	14
1,1,1-Trichloroethane	1.5	Not Detected	8.2	Not Detected
Cyclohexane	1.5	0.34 J	5.1	1.2 J
Carbon Tetrachloride	1.5	Not Detected	9.4	Not Detected
2,2,4-Trimethylpentane	1.5	0.36 J	7.0	1.7 J
Benzene	1.5	0.32 J	4.8	1.0 J
1,2-Dichloroethane	1.5	Not Detected	6.0	Not Detected
Heptane	1.5	Not Detected	6.1	Not Detected
Trichloroethene	1.5	Not Detected	8.0	Not Detected
1,2-Dichloropropane	1.5	Not Detected	6.9	Not Detected
1,4-Dioxane	6.0	Not Detected	22	Not Detected
Bromodichloromethane	1.5	Not Detected	10	Not Detected
cis-1,3-Dichloropropene	1.5	Not Detected	6.8	Not Detected
4-Methyl-2-pentanone	1.5	3.3	6.1	14
Toluene	16	1.8	5.6	7.0
bana 40 Diablasson out 55	Infante	Not Detected	6.8	Not Detected
110%	endez 8	Not Detected	8.2	Not Detected
	# 1886	1.3 J J	10	8.8 J
2-Hexanone	1.87	Not Detected	24	Not Detected

Page 1

0039 of 0432

Client Sample ID: B6-2SS Lab ID#: 1503058BR1-06A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j030521r1	Date of Collection: 3/2/15 3:08:00 PM
Dil. Factor:	2.99	Date of Analysis: 3/5/15 11:12 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	1.5	Not Detected	13	Not Detected
1,2-Dibromoethane (EDB)	1.5	Not Detected	11	Not Detected
Chlorobenzene	1.5	Not Detected	6.9	Not Detected
Ethyl Benzene	1.5	130	6.5	560
m,p-Xylene	1.5	410	6.5	1800
o-Xylene	1.5	86	6.5	370
Styrene	1.5	Not Detected	6.4	Not Detected
Bromoform	1.5	Not Detected	15	Not Detected
Cumene	- 1.5	1.0 J	7.3	4.9 J
1,1,2,2-Tetrachloroethane	1.5	Not Detected	10	Not Detected
Propylbenzene	1.5	0.87 J	7.3	4.3 J
4-Ethyltoluene	1.5	4.4	7.3	22
1,3,5-Trimethylbenzene	1.5	1.7	7.3	8.5
1,2,4-Trimethylbenzene	1.5	17 📮	7.3	82
1,3-Dichlorobenzene	1.5	Not Detected	9.0	Not Detected
1,4-Dichlorobenzene	1.5	Not Detected	9.0	Not Detected
alpha-Chlorotoluene	1.5	Not Detected	7.7	Not Detected
1,2-Dichlorobenzene	1.5	Not Detected	9.0	Not Detected
1,2,4-Trichlorobenzene	6.0	Not Detected	44	Not Detected
Hexachlorobutadiene	6.0	Not Detected	64	Not Detected
Naphthalene	3.0	27 5	16	140

J = Estimated value.

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	99	70-130	
4-Bromofluorobenzene	97	70-130	

Client Sample ID: B6-2SSDup Lab ID#: 1503058BR1-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j030522r1 4.87		f Collection: 3/2 f Analysis: 3/5/1	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount
				(ug/m3)
Freon 12	2.4	Not Detected	12	Not Detected
Freon 114	2.4	Not Detected	17	Not Detected
Chloromethane	24	Not Detected	50	Not Detected
Vinyl Chloride	2.4	Not Detected	6.2	Not Detected
1,3-Butadiene	2.4	Not Detected	5.4	Not Detected
Bromomethane	24	Not Detected	94	Not Detected
Chloroethane	9.7	Not Detected	26	Not Detected
Freon 11	2.4	Not Detected $ \mathcal{J} $	14	Not Detected
Ethanol	9.7	20	18	37
Freon 113	2.4	Not Detected	19	Not Detected
1,1-Dichloroethene	2.4	Not Detected	9.6	Not Detected
Acetone	24	140	58	320
2-Propanol	9.7	660 Ĵ	24	1600
Carbon Disulfide	9.7	Not Detected 7	30	Not Detected
3-Chloropropene	9.7	Not Detected	30	Not Detected
Methylene Chloride	24	Not Detected	84	Not Detected
Methyl tert-butyl ether	2.4	Not Detected	8.8	Not Detected
trans-1,2-Dichloroethene	2.4	Not Detected	9.6	Not Detected
Hexane	2.4	Not Detected	8.6	Not Detected
1,1-Dichloroethane	2.4	Not Detected	9.8	Not Detected
2-Butanone (Methyl Ethyl Ketone)	9.7	70	29	210
cis-1,2-Dichloroethene	2.4	Not Detected	9.6	Not Detected
Tetrahydrofuran	2.4	14	7.2	40
Chloroform	2.4	2.2 J	12	11 J
1,1,1-Trichloroethane	2.4	Not Detected	13	Not Detected
Cyclohexane	2,4	Not Detected	8.4	Not Detected
Carbon Tetrachloride	2.4	Not Detected	6. 4 15	Not Detected
2,2,4-Trimethylpentane	2.4 2.4	0.39 J	15	1.8 J
2,2,44 mineuryipentane Benzene	2.4	Not Detected	7.8	
1,2-Dichloroethane	2.4 2.4	Not Detected	7.8 9.8	Not Detected Not Detected
· · · · · · · · · · · · · · · · · · ·				
Heptane Trichloroethene	2.4	Not Detected	10	Not Detected
	2.4	Not Detected	13	Not Detected
1,2-Dichloropropane	2.4	Not Detected	11	Not Detected
1,4-Dioxane	9.7	Not Detected	35 40	Not Detected
Bromodichloromethane	2.4	Not Detected	16	Not Detected
cis-1,3-Dichloropropene	2.4	Not Detected	11	Not Detected
4-Methyl-2-pentanone	2.4	2.8	10	12
Toluene	2.4	1.7 J	9.2	6.4 J
rans-1,3-Dichloropropene little In	2.4	Not Detected	11	Not Detected
1,1,2-Trichloroetharle	2.4	Not Detected	13	Not Detected
Tetrachloroethene	8 2.4	0.32 J J	16	2.2 J

Client Sample ID: B6-2SSDup Lab ID#: 1503058BR1-07A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j030522r1 4.87		Date of Collection: 3/2/15 3:08:00 PM Date of Analysis: 3/5/15 11:39 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	2.4	Not Detected	21	Not Detected	
1,2-Dibromoethane (EDB)	2.4	Not Detected	19	Not Detected	
Chlorobenzene	2.4	Not Detected	.11	Not Detected	
Ethyl Benzene	2.4	100	10	450	
m,p-Xylene	2.4	320	10	1400	
o-Xylene	2.4	68	10	300	
Styrene	2.4	Not Detected	10	Not Detected	
Bromoform	2.4	Not Detected	25	Not Detected	
Cumene	2.4	0.81 J	12	4.0 J	
1,1,2,2-Tetrachloroethane	2.4	Not Detected	17	Not Detected	
Propylbenzene	2.4	0.71 J	12	3.5 J	
4-Ethyltoluene	2.4	3.5	12	17	
1,3,5-Trimethylbenzene	2.4	1.5 J	12	7.4 J	
1,2,4-Trimethylbenzene	2.4	12 J	12	58	
1,3-Dichlorobenzene	2.4	Not Detected	15	Not Detected	
1,4-Dichlorobenzene	2.4	Not Detected	15	Not Detected	
alpha-Chlorotoluene	2.4	Not Detected	13	Not Detected	
1,2-Dichlorobenzene	2.4	Not Detected	15	Not Detected	
1,2,4-Trichlorobenzene	9.7	Not Detected	72	Not Detected	
Hexachlorobutadiene	9.7	Not Detected	100	Not Detected	
Naphthalene	4.9	19 🗓	26	100	

J = Estimated value.

Container Type: 1 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	- 101	70-130

eurofins

Air Toxics All app

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples, D.O.T. Hottine (800) 487-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

collection, handling, or shipping of samples, D.O.T. Hotline (800) 487-4922 Project Manager Lab Use Only Project Info: **Turn Around** Time: Pressurized by: Collected by: (Print and Sign) ☐ Normal Company AM AT Date: Address 2700 Westcheste. Aug **⊠**'Rush City Richard State UY Zip 10577 Project # Pressurization Gas: 3601 Phone 914-391251-0400Fax Project Name No He Canister Pressure/Vacuum Date Time Lab I.D. Field Sample I.D. (Location) of Collection of Collection Can # **Analyses Requested** Initial Final Receipt 0" B6-AA-2 34188 0938 30 see below B6-11A 205 30 B6-21 A 1208 B6-2IADUP 1208 30 1635 30 1508 30 B6-255000 1508 30 30" 0945 Hold For Analysis Relinquished by: (signature) Date/Time Received by: (signature) Date/Time Analyte for: Acetone, Benzone, 5:1100 3. W. 157 1201 when some Isgrapy Alcohol, though MISK, Tollene, ene, and Methodol. Report to Relinquished by: (signature) Date/Time Áeceived by: (signature) Date/Time Relinguished by: (signature) Date/Time Received by: (signature) Date/Time Shipper Name Air Bill # Temp (°C) Condition Custody Seals Intact? Work Order # Lab 773032321463 Use 1570 Cont Yes No None 1503058 Only

	Project Number:1503058BR1
	Date:03/02/2015
REVIEW OF VOLATILE ORG The following guidelines for evaluating volatile organics of actions. This document will assist the reviewer in using production and in better serving the needs of the data users. The USEPA data validation guidance documents in the follow "Compendium Method TO-15. Determination of Volatile Organizers and Analyzed By Gas Chemologically-Prepared Canisters by Method TO-15, (SOI QC criteria and data validation actions listed on the data revidocument, unless otherwise noted. The hardcopied (laboratory name) _EurofinsAir_Toxicsreviewed and the quality control and performance data summer.	were created to delineate required validation rofessional judgment to make more informed the sample results were assessed according to wing order of precedence: QC criteria from ganic Compounds (VOCs) In Air Collected Informatography/Mass Spectrometry (GC/MS) ch. Validating Air Samples. Volatile Organic P # HW-31. Revision #4. October, 2006). The iew worksheets are from the primary guidance data package received has been
Lab. Project/SDG No.:1503058BR1	Sample matrix:Air
No. of Samples:3	
Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.: B6-2SS/B6-2SSDup X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesN/A Matrix Spike/Matrix Spike Duplicate	
Overall Comments:_VOCs_by_method_TO-15	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect Reviewer: Adam Adam Again Date: 07/02/2015	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACT	<u>TED</u>	DATE RECEIVED
<u> </u>			
		TO 11.1.	
			·
		······································	
**	<u> </u>	····	
	\ <u></u> \		
	<u> </u>		

	\		
		<u> </u>	
		 \	
		₹	
			
			\
			***\
**************************************	A		
	11		<u> </u>
			<u> </u>
		****	<u> </u>

All criteria were metX_	
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
AI		:4L:-4L		
Al	i sampies analyzed w	vithin the recommended	metnoa	nolding time
				1700.00
	100			
· · · · · · · · · · · · · · · · · · ·				

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

DATA REVIEW WORKSHEETS

		C	All criteria were metX Criteria were not met see below
GC/MS TUNING			
The assessment of standard tuning QC		determine if the sample instr	rumentation is within the
XThe BFB p	erformance results were	reviewed and found to be withi	n the specified criteria.
XBFB tuning	y was performed for every	y 24 hours of sample analysis.	
If no, use professi qualified or rejected		nine whether the associated d	ata should be accepted,
List	the	samples	affected:
If mass calibration	is in error, all associated	data are rejected.	

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	03/04/15	_
Dates of continuing calibra	ation:03/05/15	
Instrument ID numbers:	MSD-J	_
Matrix/Level:	Air/low	

DATE	LAB ID#	FILE	CRITERIA OUT RFs, <u>%RSD</u> , %D, r	COMPOUND	SAMPLES AFFECTED
Initial and	continuin	g calibra	ation met the method pe	rformance criteria	

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be \leq 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met
Criteria were not met
and/or see belowX

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	d_blank_meeth_n	nethod_speci	ic_criteria_except_for_the_follo	owings:
_03/05/15	1503058BR1-08	AAir/low	Bromomethane	0.34_ppbv
			m,p-xylene	
			Cumene	
			Propylbenzene	
			4-Ethyltoluene	
			1,3,5-Trimethylbenzene_	
		Air/low	1,2,4-Trimethylbenzene_	0.22_ppbv
Field <u>/</u> Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/equ	uipment_blanks_a	analyzed_with	_this_data_package	
· · · · · · · · · · · · · · · · · · ·				
				No. 10 and 10 an

The state of the s	***************************************	***************************************		
		·····		

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
•					
		77 11870000			

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID

SURROGATE COMPOUND

ACTION

1,2-DICHLOROETHANEd4

Toluene- 4-BFE

d8

_Surrogate_recoveries_within_laboratory_control_limits						
· · · · · · · · · · · · · · · · · · ·						
QC Limits* (Air)						
LL_to_UL70to_130	_70to_13070to_130					

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds who Sample ID:				not meet the criteria. Matrix/Level:		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
	arenotrequired	•			spike_used_to_assess	

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:			
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION	
				4444,4		
		*				

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

10010

All criteria were met
Criteria were not met
and/or see belowX

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

00410011410

LCS ID	COMPOUND	% R	RPD	QC LIMIT
LCS/LCSD%_r _followings:	ecoveries_and_RPD_within_labo	oratory_con	trol_limits_	except_for_the
				And the second s
1503058BF	R1-10A1,2,4-Trichlorobenzene	150_%	39	70130/25

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	LABORATORY DUPLICATE PRECISION	
	Sample IDs:LCS/LCSD	Matrix:Air

Laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
RPD within labora	itory and	generally ac	ceptable control	limits exc	ept for the following:
1,2,4-Trichlorobenzene		150	101	39	No action, professional
Hexachlorobutadiene		149	101	38	judgment. QC sample.
Naphthalene		123	84	38	

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met
Criteria were not met
and/or see below X

IX. FIELD DUPLICATE PRECISION

Sample IDs:	B6-2SS/B6-2SSDup	Matrix:Air
-------------	------------------	------------

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
Freon 11		0.52	ND	NR	Qualify results (J) in sample and duplicate
2-Propanol		210	660	103 %	Qualify results (J) in sample and duplicate
Carbon Disulfide		2.1	ND	NR	Qualify results (J) in sample and duplicate
2-Butanone		91	70	26 %	Qualify results (J) in sample and duplicate
Tetrachloroetheme		1.3	0.32	121 %	Qualify results (J) in sample and duplicate
1,2,4-Trimethylbenzene		17	12	35 %	Qualify results (J) in sample and duplicate
Naphthalene		27	19	35 %	Qualify results (J) in sample and duplicate

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

Actions:

All criteria were metX
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_area_and_reation_standards		within_laboratory	_control_limits_for_	_both_samples

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1503058BR1-05A

Chloroform

RF = 2.48216

[] = (6281)(25.0)/(117187)(2.48216)

= 0.53983 ppbv OK

All criteria were metX
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
1503058BR1-	6.72	Dilution was performed on all samples due to the
05A		presence of high level target species.
1503058BR1-	2.99	
06A	4.00	
1503058BR1-	4.87	·
07A		
· · · · · · · · · · · · · · · · · · ·		
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
and the second second	 	

Percent Solids
List samples which have ≤ 50 % solids

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ) If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)